

www.ijatir.org

ISSN 2348–2370

Vol.07,Issue.17,

November-2015,

Pages:3370-3373

Copyright @ 2015 IJATIR. All rights reserved.

Speculative Analysis of Communications in Code Version Conflicts
R. LAKSHMI TRIVENI

PG Scholar, JNTU, Kakinada, AP, India, E-mail: ratakondatrivenit6@gmail.com.

Abstract: Conflicts among programmers' inconsistent copies

of an shared task appear in collaborative development and

can decrease progression and quality of shared project.

Identifying such situation early can offer assistance.

Identifying conditions which may lead to conflict can prevent

a few of them. Crystal, a publicly available tool was designed

and implemented that unobtrusively provides information

about the existence of conflicts in an ongoing and precise

way. It uses speculative analysis and mainly focus on

qualitative approach. In this we propose a framework to

improve backup group functions over rule database so that it

upholds quantitative approach.

Keywords: Qualitative And Quantitative, Conflicts And

Risks, Crystal Tool Operations, Collaborative Development.

I. INTRODUCTION
 Each participant of a collaborative growth venture works

on an individual copy duplicate of the venture documents.

Each designer continuously makes changes to his or her local

duplicate of the documents, shares those changes with the

group, and features changes from group members. The

reduce synchronization of these actions allows fast growth

improvement, but also allows the designers to create

multiple, unreliable changes. Disputes can be textual or

higher order. A textual dispute arises when two designers

create unreliable changes to the same part of the resource

rule. To avoid following changes from overwriting past ones,

a version control system (VCS) allows the first designer to

post changes, but stops the second designer from posting

until the issue is settled instantly (by the VCS) or personally

(by a developer). Higher order disputes cause collection

mistakes, test problems, or other problems, and are

challenging to identify and take care of in exercise[3]. As

with mistakes in applications, it is generally easier and less

expensive to recognize and fix conflicts early, before they

distribute in the rule and the appropriate changes disappear in

the remembrances of the designers [2].

A. Conflict

 Inconsistent copies of shared project in collaborative

development may lead to conflict [3][5][8] as shown in Fig.1.

Ex: developer 1 create file x

developer 2 modifies developer 1 file x'

if developer 1 access file x then,

conflict occurs as x is different from x'.

B. Conflict Management

 It is the process of limiting the negative aspects of conflicts

[9][10][12] while increasing the positive aspects of the

conflict. Identifying the situation which may lead to conflicts

can prevent some conflict.

Ex: Second developer must wait until first developer publish

changes to avoid conflict.

Fig.1. Sharing information from one user to another user.

C. Risk Management Process

Risk: It is a potential prospect damage that may arise from

some present events such as a cost swamped. Due to conflicts

organizations has to face many risks. They are

 Cost increases

 Time delay

 Risk management is a sequence of steps whose objectives

are to discover, address, and remove software risks things

before they become terrorization.

Risk Management Process Steps:

Step 1: Risk Identification

 It allows individual to identify risks, so that the

operational staff becomes aware of potential problems. Not

only should risk identification be undertaken as early as

possible, but it also should be repeated frequently.

Step 2: Risk Impact Assessment
 It assess the probabilities and consequences of risk events.

The consequences may include cost, schedule, technical

R. LAKSHMI TRIVENI

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.17, November-2015, Pages: 3370-3373

performance impact, as well as capability or functionality [4]

impacts.

Step 3: Risk Prioritization Analysis
 Risk analysis transforms the estimated data about specific

risks that developed during risk identification in to a

consistent form that can be used to make decisions around

prioritization. Risk prioritization enables operations to

commit resources to manage the most important risks.

Step 4: Risk Planning & Schedule
 Risk planning takes the information obtained from risk

analysis and uses it to formulate strategies, plans, change

requests and actions. Risk scheduling ensures that these plans

are approved and then incorporated into the standard day-to-

day process and infrastructure.

Step 5: Risk Tracking
 Risk tracking monitors the status of specific risks and the

progress in their respective action plans as shown in Fig.2.

Risk tracking also includes monitoring the probability,

impact, exposure and other measure of risk for changes that

could alter priority or risk plans and ultimately the

availability of the service.

Fig.2. Risk management process.

II. BACKGROUND APPROACH

 Crystal tool, provides the key details without frustrating

or annoying the designer in three ways [1]. First, a taskbar

symbol in the program plate reviews the most serious state

for all monitored databases. A screenshot of george's view of

crystal. George is following two projects under development:

"Let it be" and "Handle with care". The former has four

observed collaborations: George, Paul, Ringo and John; the

latter has five: George, Jeff, Roy, Bob and Tom. Crystal

shoes George local state and his relationship with the master

repository and the other collaborators, as well as guidance

based on that information as shown in Fig.3. A designer who

likes to get restricted but details need never open the primary

screen. (Crystal never reveals any screen asynchronously).

Second, the primary screen compactly summarizes all tasks

and connections, enabling a designer to immediately check

out it to recognize circumstances that may require attention.

Fig.3.Crystal sample screenshot.

 The primary screen reveals symbol taking advantage of

shade redundantly and in constant places (rather than, say, a

textual list that a designer would have to read and interpret).

Each icon's set full, details about each connection, action and

assistance is available but invisible until a designer reveals

specific interest in it. When the designer moves over an

symbol, a tooltip reveals all the details.

III. PROPOSED APPROACH

 Bugs or features of the software are often only present in

certain versions (because of the fixing of some problems and

the introduction of others as the program develops).

Evaluation of crystal tool is preliminary and qualitative.

Efforts needed to be develop to evaluate it via both

qualitative and quantitative approaches. Crystal's automation

framework replace many of the existing command mode

operations is efficient to support many project relationships.

We propose to extend its utility by enhancing it to support

batch operations over code repositories so that it upholds the

quantitative approach. Bulk operations over code storages

enhance the crystal tool further and a prototype validates our

claim. In this approach first project are assigned to developer

depending on their area of development. After assigning

complete project details are stored in database which can

viewed by only who can be logged in to the database. The

project details include project category, user name, name of

the file developed by that user, path where the file is stored,

version and uploaded date and time. It provides the

information about the original developer of the file. In

collaborative development developers work together on same

project to complete their task. In this development method

any developer can access any file at any instant and can able

to make changes to that file which was not originally

developed by that user.

 In existing approach changes made by each developer is

not saved only recently made changes are only saved. But in

proposed approach modifications done on a file by different

users are saved using a framework. Backup is provided for

each operation done on file. A framework is developed in

Speculative Analysis of Communications in Code Version Conflicts

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.17, November-2015, Pages: 3370-3373

such a way that complete details are stored in code storages

folder in drive which can be accessed by authorized

developers. Here files are stored according to project

category. Files that are developed for same project by

different users are also stored in code storages based on

project category. In this approach modified file is stored with

file name including user name and version as shown in Fig.4.

Here user name is the name of the user who committed the

file and version number varies depends on number of times

modifications done on that file. By providing backup for

batch operations can upholds quantitative approach.

Fig.4. A screenshot which shows the backup files that are

saved in drive.

IV. COMPARISSION

 We compared the enhanced method with previous work.

We recommended to improve its application by improving it

to backup group functions over program code databases so

that it upholds quantitative parameter. The approach used in

previous work will focus mainly on quality of data with no

backup.

Fig.5. A sample graph which differs existing and

enhanced work.

 The enhanced method focus on backup. Our experimental

results show efficient process communication event

management with preferred program evaluation. In existing

system only recently modified data can only be accessed but

in enhancement all the modified data is stored in a drive

which can be accessed by any one at any time with this

modification data can be easily identified as shown in Fig.5.

The graph shows the difference between proposed and

enhanced work by providing backup facility.

V. CONCLUSION

 Speculative analysis over version control operations

provides precise information about pending conflicts between

collaborating team members. These pending conflicts

including textual, build and test are guaranteed to occur.

Learning about them earlier allows developer to make better

informed decisions about how to proceed, whether it is to

perform a safe merge, to publish a safe change, to quickly

address a new conflict, to interact with another developer and

so in. NCSL indicates that

 Conflicts are norm rather than the exception,

 16 percent of all merges required human effort to resolve

textual conflicts,

 33 percent of merges that were reported to contain no

textual conflicts by the VCS in fact contained higher

order conflicts.

 To date, developments in software programs for analysis

of qualitative data that have contributed most noticeably to

researchers capacity. Initiatives required to be designed to

assess it via both qualitative and quantitative factors.

Crystal's automated framework to substitute many of the

current control method functions is effective to back up many

venture connections. To improve its application by

improving it to back up group functions over program code

database so that it upholds quantitative parameter.

VI. REFERENCES

[1]Yuriy Brun, Reid Holmes "Early Detection of

Collaboration Conflicts and Risks ," ieee transactions on

software engineering. vol 39, no 10,OCT 2013.

[2] P . Dewan, "Dimensions of Tools for Detecting Software

Conflicts," Proc. Int'l Workshop Recommendation Systems

for Software Eng, pp. 21-25,Nov. 2003.

[3].S. Horwitz J. Prins, and T. Reps, "Integrating

Noninterfering Versions of Programs." ACM Trans.

Programming Languages and Systems, vol 11, pp. 345-

387,july 1989.

[4] . Hemalatha Narne, Adepu Sridhar, "Speculative Analysis

Exploits Qualitative and Quantitative User Studies," UDCST

Feb-March Issue V-2, I-3, SW-06.

[5]. C.R.B. de Souza, D. Redmiles and P. Dourish,

"Breaking the Code,' Moving between Private and Public

Work in Collaborative Software Development." Proc. Int'l

ACM SIGGROUP Conf. Supporting Group Work, pp.105-

114, Nov. 2003.

R. LAKSHMI TRIVENI

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.17, November-2015, Pages: 3370-3373

[6]. C. Bird and T. Zimmermann, “Assessing the Value of

Branches with What-If Analysis,” Proc. ACM SIGSOFT

20th Int’l Symp. Foundations of Software Eng., 2012.

[7]. Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,

“Speculative Analysis: Exploring Future States of Software,”

Proc. FSE/SDP Workshop Future of Software Eng. Research,

pp. 59-63, Nov. 2010.

[8]. J. Estublier and S. Garcia, "Process Model and

Awareness in SCM," Proc. 12th Int'l Workshop Software

Configuration Management, pp. 59-74, Sept 2005.

[9]. R.E. Grinter, "Using a Configuration Management Tool

to Coordinate Software Development," Proc. Conf.

Organizational Computing Systems, pp. 168-177, Aug.1995.

[10]. D.E Perry, H.P. Siy, and L.G. Votta, " Parallel Changes

in Large-Scale Software Development: An Observational

Case Study," ACM Trans Software Eng. and Methodology,

vol.10, pp.308-337, July 2001.

[11] . J. D. Knowles and D. Corne. Properties of an adaptive

archiving algorithm for storing non dominated vectors.

IEEE Transactions Evolutionary Computation, 7(2):100–116,

2003.

[12]. T. Zimmermann, "Mining Workshop Updates inCVS,"

Proc. Fourth Int'l Workshop Mining Software Repositories,

May 2007.

[13]. M. L´opez-Ib´a˜nez, J. Knowles, and M. Laumanns.

On sequential online archiving of objective vectors. In R. H.

C. Takahashi, K. Deb, E. F. Wanner, and S. Greco, editors,

Proceedings of Evolutionary Multi-criterion Optimization

(EMO 2011), volume 6576 of Lecture Notes in Computer

Science, pages 46–60. Springer, 2011.

[14]. F. Neumann and J. Reichel. Approximating minimum

multicuts by evolutionary multi-objective algorithms. In

Proceedings of Parallel Problem Solving from Nature X

(PPSN ’08), volume 5199 of Lecture Notes in Computer

Science, pages 72–81. Springer, 2008.

