

www.ijatir.org

ISSN 2348–2370

Vol.08,Issue.05,

May-2016,

Pages:0903-0909

Copyright @ 2016 IJATIR. All rights reserved.

Package Description by Runtime Standards Also Its Presentation Towards

Software Piracy Finding
M. JHANSI LAKSHMI

1
, R.V. KISHORE KUMAR

2

1
PG Scholar, Dept of SE, Sri Mittapalli College of Engineering, Thummalapalem, Guntur, AP, India.

2
Assistant Professor, Dept of CSE, Sri Mittapalli College of Engineering, Thummalapalem, Guntur, AP, India.

Abstract: Misusing same code in same or similar code

fragments has become a major issue to Software

Community. Simarility in misuse of code raises where

Plagiarizers can use different Obfuscation Techniques To

Hide Stolen Code From Being Detected. Several Researches

has been done but can’t handle Obfuscation Techniques. The

Source Code Analysis cannot be implemented . Depending

on the Observation some critical values replaced with

Semantics-Preserving Techniques. So, A Novel Approach

of Dynamic Characterization of Executable Programs is

flexible to control the Data Obfuscation Techniques. Using

this technique, how the values can be extracted and

dynamically changing during runtime helps to resolve issues

in detecting Software Plagarism. A Prototype with A

Dynamic Taint Analyzer Atop. A Generic Processor

Emulator has been implemented. Value-Based Plagiarism

Detection Method evaluates to verify Whether Two Code

Fragments Belong To The Same Lineage. Most of the

Experimental Results have been proved that proposed

technique like Value –Based Method is best suitable to

detect software plagiarisms.

Keywords: Software Plagiarism Detection, Dynamic Code

Identification.

I. INTRODUCTION

Detecting duplicate codes among various Programs is

very important issue in applications .It can degrade the

performance in development and execution phase. In such

situations ,Code Identification techniques such as Clone

Detection can be used to identify and Refactor the duplicate

Code Fragments to improve the Program. Various

Programmers has been developing these kind of programs

individually they do not embed any public domain code.

Hence Duplicate code leads to Software Plagiarism Or Code

Thef . In Code Theft Cases, Determining The Sameness Of

Two Code Fragments Becomes Much More Difficult Since

Plagiarizers Can Use Various Code Transformation

Techniques Including Code Obfuscation Techniques To

Hide Stolen Code From Detection [9], [10], [11]. In Order

To Handle Such Cases, Code Characterization And

Identification Techniques Must Be Able To Detect

Semantically Equivalent Code (I.E., Two Code Fragments

Belonging To The Same Lineage) Without Being Easily

Circumvented By Code Transformation Techniques.

Researching are highly insufficient in meeting the two

Highly Desired Requirements: (R1) Resiliency to the

Automated Semantics-Preserving Obfuscation Tools That

Can Easily Transform Most Of The Syntactic Features Such

As Strings [9], [12], [13], [14], [15]; And (R2) Ability To

Directly Work On Binary Executables Of Suspected

Programs Since, In Some Applications Such As Code Theft

Cases, The Source Code Of Suspect Software Products

Often Cannot Be Obtained Until Some Strong Evidences

Have Been Collected.

 The Existing Schemes Can Be Broken Down Into Four

Classes To See Their Limitations With Respect To The

Aforementioned Three Requirements: (C1) Static Source

Code Comparison Methods [16], [17], [18], [19], [20], [21],

[22], [23]; (C2) Static Executable Code Comparison

Methods [24]; (C3) Dynamic Control Flow Based Methods

[25]; (C4) Dynamic API Based Methods [26], [27], [28]. We

May Briefly Summarize Their Limitations As Follows. First,

Class C1, C2 And C3 Do Not Satisfy Requirement R1

Because They Are Vulnerable To Semantics-Preserving

Obfuscation Techniques Such As Outlining And Ordering

Transformation. Second, C1 Does Not Meet R2 Because It

Has To Access Source Code. Hence, deal with various above

issues invented a Novel Approach for Dynamic

Characterization Of Executable Programs. After We

Examined Various Runtime Properties Of Executable

Programs, We Found An Interesting Observation That Some

Runtime Values (Or Computation Results Of Some Machine

Instructions) Of A Program Are Hard To Be Replaced Or

Eliminated By Semantics-Preserving Transformation

Techniques Such As Optimization Techniques, Obfuscation

Techniques, Different Compilers, Etc. We Call Such Values

Core Values. Note Core Values Are Values Computed At

Runtime From Program Execution, Not The Static Constants

Embedded In The Executables Such As Strings, Which Can

Be Easily Obfuscated.

 To Investigate the Resilience of Core Values (To

Semantics-Preserving Code Transformation), We Generated

E1::5, Five Different Versions of Executable Files Of Test

Program P Written In C, By Compiling P With Each Of The

Five Optimization Switches Of GCC (-O0, -O1, -O2, -O3,

And -Os). From Each Of E1::5 Given The Same Test

M. JHANSI LAKSHMI, R.V. KISHORE KUMAR

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

Input,We Extracted A Value Sequence, A Sequence Of

Values (4- Bit, 8-Bit, 16-Bit, Or 32-Bit) Written As

Computation Results Of Arithmetic Instructions And Bit-

Wise Instructions In The Execution Path. As A Way Of

Retaining (In The Value Sequence) Only The Values

Derived From Input, We Implemented A Dynamic Taint

Analyzer.1 When We Analyzed The Value Sequences Of

E1::5, We Found That Some Values Survived All Of The

Five Optimization Switches. Moreover, The Sequence Of

The Values Surviving All Of The Five Optimization

Switches Was Enclosed Almost Perfectly By The Value

Sequences Of Executables Generated By Compiling P With

Different Compilers (We Tested Tiny C Compiler [29] And

Open Watcom C Compiler [30]). This Indicates That Core-

Values Do Exist And We Can Use Them To Check Whether

Two Code Fragments Belong To The Same Lineage.

 In This Paper, We Show (1) How We Extract The Values

Revealing Core-Values; And (2) How We Apply This

Runtime Property To Solve Problems In Software Plagiarism

Detection. We Have Implemented A Value Extractor With A

Specific Dynamic Taint Analyzer And Value Refinement

Techniques Atop A Generic Processor Emulator, As Part Of

Our Value-Based Program Characterization Method. As A

Machine Code Analyzer Which Directly Works On Binary

Executables, Our Technique Satisfies R2. Regarding The

Requirement R1, We Have Implemented A Value-Based

Software Plagiarism Detection Method (Vapd) That Uses

Similarity Measuring Algorithms Based On Sequences And

Dependence Graphs Constructed From The Extracted

Values. We Have Evaluated It Through A Set Of Real World

Obfuscators Including Two Commercial Products, Zelix Pty

Ltd.’S Klassmaster [15] And Semantic Designs Inc.’S

Thicket [14]. Our Experimental Results Indicate That The

Vapd Successfully Discriminated 34 Plagiarisms Obfuscated

By Sandmark [12] (Totally 39 Obfuscators, But 5 Of Them

Failed To Obfuscate Our Test Programs); Plagiarisms eavily

Obfuscated By Klassmaster,2 Programs Obfuscated By The

Thicket C Obfuscator, And Executables Obfuscated By

Control Flow Flattening Implemented In The Loco/Diablo

Link-Time Optimizer [13].

Contributions: In Summary, We Make The Following

Contributions:

1. We Present A Novel Code Characterization Method

Based On Runtime Values. To Our Best Knowledge,

Our Work Is The First One Exploring The Existence Of

The Core-Values.

2. By Exploiting Runtime Values That Can Hardly Be

Changed Or Replaced, Our Code Characterization

Technique Is Resilient To Various Control And Data

Obfuscation Techniques.

3. Our Plagiarism Detection Method (Vapd) Does Not

Require Access to Source Code of Suspicious Programs,

Thus It Could Greatly Reduce Plaintiff’s Risks Through

Providing Strong Evidences Before Filing A Lawsuit

Related To Intellectual Property.

4. We Evaluate Vapd Through A Set Of Real World

Programs.

This Paper Is Organized As Follows. In The Next Section,

We Briefly Discuss Related Works. In SectionIII, We

Discuss The Existence Of Core-Values Implied By Our

Experimental Results. In Section 4 And 5, We Evaluate Our

Valuebased Code Characterization Method By Applying It

To The Problems Of Software Plagiarism Detection. In

Section 6, We Address Reordering Attacks And Evaluate

Our Dependence Graph Based Method. Finally, The

Limitations, Some Potential Counterattacks, And Future

Work Are Discussed In Section 7.

II. OVERVIEW OF EXISTING SYSTEMS

 Methods for identifying the similarity in source code was

created with String –Based algorithms used in finding

Plagiarism of original Code. These Common section

referred as Code replicas [5]. Finding replicas In Software

Analysis has become a major issue. Most Of The Existing

Approaches to Detect Plagiarism Employ Counting

Heuristics Or String Matching Techniques To Measure

Similarity In Source Code [1]. Source Code Can Be

Represented As Graphs. Existing Graph Theory Algorithms

Can Then Be Applied To Measure The Similarity Between

Source Code Graphs [2]. There Are Methods Based On

Program Dependency Graph (PDG) Which Cannot Detect

Similarities If Semantics Preserving Transformation Is

Applied On The Source Code. Birthmarks Based On

Dynamic Analysis Can Also Be Used To Detect Plagiarism.

Whole Program Path (WPP) Birthmarks Represent The

Dynamic Control Flow Of A Program Are Robust To Some

Control Flow Obfuscation, But Vulnerable To Semantics-

Preserving Transformations. There Are Variety Of Dynamic

Birthmarks Based On System Call, Sequence Of API

Function Call And Frequency Of API Function Call. They

Are Also Vulnerable To Real Obfuscation Techniques [14].

Chanet Al [15] Proposed A Birthmark System For Javascript

Programs Based On The Runtime Heap. The Heap Profiler

Takes Multiple Snapshots Of The Javascript Program During

Execution. The Graph Generator Generates Heap Graphs

Containing Objects Created During Execution As Nodes.

Plagiarism Is Detected From The Heap Graphs Of Genuine

And Suspected Programs.

III. PROPOSED APPROACH

 We evaluate our proposed method through a set of real-

world automated obfuscators. Our experimental results show

that the value-based method successfully discriminates 34

plagiarisms obfuscated by SandMark, plagiarisms heavily

obfuscated by KlassMaster, programs obfuscated by Thicket,

and executables obfuscated by Loco/Diablo. Thus It Could

Greatly Reduce Plaintiff’s Risks Through Providing Strong

Evidences Before Filing A Lawsuit Related To Intellectual

Property.

IV. DESIGN

 Software Theft Has Become A Very Serious Concern To

Software Companies And Open Source Communities. In

The Presence Of Automated Semantics-Preserving Code

Transformation Tools, The Existing Code Characterization

Techniques May Face An Impediment To Finding Sameness

Package Description by Runtime Standards Also Its Presentation Towards Software Piracy Finding

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

Of Plagiarized Code And The Original. In This Section, We

Discuss How We Apply Our Technique To Software

Plagiarism Detection. Later, We Evaluate Our Method

Against Such Code Obfuscation Tools In The Context Of

Software Plagiarism Detection. Scope Of Our Work: We

Consider The Following Types Of Software Plagiarisms In

The Presence Of Automated Obfuscators: Whole-Program

Plagiarism, Where The Plagiarizer Copies The Whole Or

Majority Of The Plaintiff Program And Wraps It In A

Modified Interface, And Corepart Plagiarism, Where The

Plagiarizer Copies Only A Part Such As A Module Or An

Engine Of The Plaintiff Program. Our Main Purpose Of

Vapd Is To Develop A Practical Solution To Real-World

Problems Of The Whole-Program Software Plagiarism

Detection, In Which No Source Code Of The Suspect

Program Is Available. Vapd Can Also Be A Useful Tool To

Solve Many Partial Plagiarism Cases Where The Plaintiff

Can Provide The Information About Which Part Of His

Program Is Likely To Be Plagiarized. We Present

Applicability Of Our Technique To Core-Part Plagiarism

Detection In The Discussion Section. We Note That If The

Plagiarized Code Is Very Small Or Functionally Trivial,

Vapd Would Not Be An Appropriate Tool.

V. RUNTIME VALUES

 The Runtime Values Of A Program Are Defined As

Values From The Output Operands Of The Machine

Instructions Executed Programs; We Observed That Some

Runtime Values Of A Program Could Not Be Changed

Through Automated Semantics Preserving Transformation

Techniques Such As Optimization, Obfuscation, Different

Compilers, Etc. We Call Such Invariant Values Corevalues.

Core-Values Of A Program Are Constructed From Runtime

Values That Are Pivotal For The Program To Transform Its

Input To Desired Output. We Can Practically Eliminate

Noncore Values From The Runtime Values To Retain Core-

Values. To Identify Non-Core Values, We Leverage Taint

Analysis And Easily Accessible Semantics-Preserving

Transformation Techniques Such As Optimization

Techniques Implemented In Compilers. Let Vp Be A

Runtime Value Of Program P Taking I As Input, And F Be

A Semantics-Preserving Transformation. Then, The Non-

Core Values Have The Following Properties: (1) If Vp Is

Not Derived From I, Vp Is Not A Core-Value Of P; (2) If Vp

Is Not In The Set Of Runtime Values Of F (P), Vp Is Not A

Core-Value Of P.

VI. EXTRACTION OF RUNTIME VALUES

 Since Not All Values Associated With The Execution Of

A Program Are Core-Values, We Establish The Following

Requirements For A Value To Be Added Into A Value

Sequence: The Value Should Be Output Of A Value-

Updating Instruction And Be Closely Related To The

Program’s Semantics. Informally, A Computer Is A State

Machine That Makes State Transition Based On Input And

A Sequence Of Machine Instructions. After Every Single

Execution Of A Machine Instruction, The State Is Updated

With The Outcome Of The Instruction. Because The

Sequence Of State Updates Reflects How The Program

Computes, The Sequence Of State-Updating Values Is

Closely Related To The Program’s Semantics. As Such, In

Value Based Characterization, We Are Interested Only In

The State Transitions Made By Value-Updating Instructions.

More Formally, We Can Conceptualize The State-Update As

The Change Of Data Stored In Devices Such As RAM And

Registers After Each Instruction Is Performed, And We Call

The Changed Data A Stateupdating Value. We Further

Define A Value-Updating Instruction As A Machine

Instruction That Does Not Always Preserve Input In Its

Output. Being An Output Of A Value Updating Instruction

Is A Sufficient Condition To Be A State Updating Value.

Therefore, We Exclude Output Values Of Non-Value-

Updating Instructions From A Value Sequence. In Our X86

Implementation, The Valueupdating Instructions Are The

Standard Mathematical Operations (Add, Sub, Etc.), The

Logical Operators (And, Or, Etc.), Bit Shift Arithmetic And

Logical (Shl, Shr, Etc.), And Rotate Operations (Ror, Rcl,

Etc.).

VII. CORE PART PLAGIARISM

 Core-Part Plagiarism Is A Harder Problem. In Such Case,

Only Some Part Of A Program Is Plagiarized. For Example,

A Less Ethical Developer May Steal Code From Some Open

Source Projects And Fit The Essential Module Into His

Project With Obfuscation. Let IPM And ISM Be The Input

To The Plagiarized Module And Suspect Module

Respectively, And V(X) Be A Value Based Characteristic

Such As A Value Sequence Extracted From X, A Program

Or A Module. Memory Addresses Or Pointer Values Stored

In Registers Or Memory Locations Are Transient. For

Example, Some Binary Transformation Techniques Such As

Word Alignment And Local Variable Reordering Can

Change Pointers To Local Variables Or Offsets In Stack;

And Heap Pointers May Not Be The Same Next Time The

Program Is Executed Even With The Same Input. Therefore,

We Do Not Include Pointer Values In A Refined Value

Sequence. In Our VaPD Prototype, We Implement A Range

Checking Based Heuristic To Detect Addresses. Our Test

Bed Dynamically Monitors The Changes Of Memory Pages

Allocated To The Program Being Analyzed, And It

Maintains A List Of Ranges Of All The Allocated Pages

With Write Permission Enabled. If A Runtime Value Is

Found To Be Within The Ranges In The List, Vapd Discards

The Value, Regarding The Value As An Address. Although

This Heuristic May Also Delete Some Non-Pointer Values,

It Can Remove Pointers To Stack And To Heap With No

Exception. Address Removal Heuristic Is Applicable To

Both Plaintiff And Suspect Programs.

 Our Technique Bears The Following Limitations. First,

Besides The Ability Of Extracting Value Sequences From

The Entire Scope Of The Plaintiff Program, Vapd Provides

The Partial Extraction Mode In Which It Can Extract Value

Sequences From Only A Small Part Of The Program. Based

On This, We Discuss About The Feasibility Of Applying

Vapd To The Partial Plagiarism Detection Problems.

However, We Have Not Yet Comprehensively Evaluated

M. JHANSI LAKSHMI, R.V. KISHORE KUMAR

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

This Issue With Real World Test Subjects. In Such Case, A

More Efficient And Scalable Program Emulator Or Logger

Other Than QEMU May Be Needed. Second, Vapd May Not

Apply If The Program Implements A Very Simple

Algorithm. In Such Cases, The Value Sequences Can Be

Too Short, Which Increases Sensitivity To Noises. Our

Metric Is More Likely To Cause False Positives When A

Very Short Value Sequence Is Compared To A Much

Longer One. Third, As A Detection System, There Exists A

Trade-Off Between False Positives And False Negatives.

The Detection Result Of Our Tool Depends On The

Similarity Score Threshold. Unfortunately, Without Many

Real-World Plagiarism Samples Which Are Often Not

Available, We Are Unable To Show Concrete Results On

Such False Rates. As Such, Rather Than Applying Our Tool

To “Prove” Software Plagiarisms, In Practice One May Use

It To Collect Initial Evidences Before Taking Further

Investigations, Which Often Involve Nontechnical Actions.

VIII. OUTPUT SCREENS

Fig1. Home.

Fig2. Login Page.

Fig3. User booking details.

Fig4. View book details.

Fig5. Plagiarism detection.

Package Description by Runtime Standards Also Its Presentation Towards Software Piracy Finding

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

Fig6. Finding the original.

IX. CONCLUSION

 The Code Analysis Applications with Code theft Detection

is prior to the Obfuscation Resilient Code Characterization

in order to detecting code theft. In future work, along with

an efficient runtime to support this approach. Results show

that it can greatly improve the performance of Identifying

Software Plagiarism Our Technique Is Resilient to Various

Control and Data Obfuscation Techniques. Hence Proposed

Approach i.e. Value-Based Method is highly efficient for

detecting the duplicate codes.

X. REFERENCES
[1] B. S. Baker, “On Finding Duplication And Near-

Duplication In Large Software Systems,” In Proceedings Of

2nd Working Conference On Reverse Engineering (Wcre

’95), 1995, Pp. 86–95.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’anna, And L.

Bier, “Clone Detection Using Abstract Syntax Trees.” In Int.

Conf. On Software Maintenance, 1998.

[3] K. Kontogiannis, M. Galler, And R. Demori, “Detecting

Code Similarity Using Patterns.” In Working Notes Of 3rd

Workshop On Ai And Software Engineering, 1995.

[4] J. Krinke, “Identifying Similar Code With Program

Dependence Graphs.” In Proceedings Of Eighth Working

Conference On Reverse Engineering (Wcre ’01), 2001, Pp.

301–309.

[5] T. Kamiya, S. Kusumoto, And K. Inoue., “Ccfinder: A

Multilinguistic Token-Based Code Clone Detection System

For Large Scale Source Code.” Ieee Transactions On

Software Engineering, Vol. 28,No. 7, Pp. 654–670, 2002.

[6] M. Gabel, L. Jiang, And Z. Su, “Scalable Detection Of

Semantic Clones,” In Proceedings Of The 30th International

Conference On Software Engineering (Icse ’08), 2008, Pp.

321–330.

[7] L. Jiang, Z. Su, And E. Chiu, “Context-Based Detection

Of Clonerelated Bugs,” In Proceedings Of The The 6th Joint

Meeting Of The European Software Engineering Conference

And The Acm Sigsoft Symposium On The Foundations Of

Software Engineering, Ser. Esecfse

’07, 2007, Pp. 55–64.

[8] L. Jiang, G. Misherghi, Z. Su, And S. Glondu, “Deckard:

Scalable And Accurate Tree-Based Detection Of Code

Clones,” In Proceedings Of The 29th International

Conference On Software Engineering (Icse ’07), 2007, Pp.

96–105.

[9]C. Collberg, C. Thomborson, And D. Low, “A Taxonomy

Of Obfuscating Transformations,” The Univeristy Of

Auckland, Tech. Rep. 148, Jul. 1997.

[10] C. S. Collberg, C. Thomborson, And D. Low,

“Manufacturing Cheap, Resilient, And Stealthy Opaque

Constructs,” In Proceedings Of The 25th Acm Sigplan-

Sigact Symposium On Principles Of Programming

Languages (Popl ’98), 1998, Pp. 184–196.

[11] C. Wang, “A Security Architecture For Survivability

Mechanisms,”Ph.D. Dissertation, University Of Virginia,

Charlottesville, Va, Usa, 2001, Adviser-John Knight.

[12] C. Collberg, G. Myles, And A. Huntwork, “Sandmark–

A Tool For Software Protection Research,” Ieee Security

And Privacy, Vol. 1, No. 4, Pp. 40–49, 2003.

[13] M. Madou, L. Van Put, And K. De Bosschere, “Loco:

An Interactive Code (De)Obfuscation Tool,” In Proceedings

Of The 2006 Acm Sigplan Symposium On Partial

Evaluation And Semantics-Based Program Manipulation

(Pepm ’06), 2006, Pp. 140–144.

[14] Semantic Designs, Inc., “Thickettm,” Http://Www.

Semanticdesigns.Com. [15] Zelix Pty Lt, “Java Obfuscator -

ZelixKlassmaster,”Online,Http://Www.Zelix.Com/Klassmas

ter/Features.Html.

[16] C. Liu, C. Chen, J. Han, And P. S. Yu, “Gplag:

Detection Of Software Plagiarism By Program Dependence

Graph Analysis,” In Proceedings Of The 12th Acm Sigkdd

International Conference On Knowledge Discovery And

Data Mining (Kdd ’06), 2006, Pp. 872–881.

[17] H. Tamada, M. Nakamura, A. Monden, And K. Ichi

Matsumoto, “Design And Evaluation Of Birthmarks For

Detecting Theft Of Java Programs,” In Iasted Conference On

Software Engineering (Iasted Se ’04), February 2004, Pp.

569–574, Innsbruck, Austria.

[18] W. Yang, “Identifying Syntactic Differences Between

Two Programs,”Software: Practice And Experience, Vol. 21,

No. 7, Pp. 739–755, 1991.

[19] Y.-C. Kim And J. Choi, “A Program Plagiarism

Evaluation System,”In Information And Communication

Technology Education Workshop,2005.

[20] N. Truong, P. Roe, And P. Bancroft, “Static Analysis

Of Students’Java Programs,” In Ace ’04: Proc. Of The 6th

Conf. On Australasian Computing Education, 2004.

[21] L. Prechelt, G. Malpohl, And M. Philippsen, “Finding

Plagiarisms Among A Set Of Programs With Jplag,”

Universal Computer Science,2000.

[22] S. Schleimer, D. S. Wilkerson, And A. Aiken,

“Winnowing: Local Algorithms For Document

Fingerprinting.” In Acm Sigmod Int. Conf. On Management

Of Data, 2003.

M. JHANSI LAKSHMI, R.V. KISHORE KUMAR

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

[23] J.-H. Ji, G. Woo, And H.-G. Cho, “A Source Code

Linearization Technique For Detecting Plagiarized

Programs,” In Proceedings Of The 12th Annual Sigcse

Conference On Innovation And Technology In Computer

Science Education (Iticse ’07), 2007, Pp. 73–77.

[24] G. Myles And C. Collberg, “K-Gram Based Software

Birthmarks,” In Proceedings Of The 2005 Acm Symposium

On Applied Computing (Sac ’05), 2005, Pp. 314–318.

[25] G. Myles And C. S. Collberg, “Detecting Software

Theft Via Whole Program Path Birthmarks,” In Proceedings

Of 7th International Conference On Information Security

(Isc ’04), 2004.

[26] D. Schuler, V. Dallmeier, And C. Lindig, “A Dynamic

Birthmark For Java,” In Proceedings Of The Twenty-Second

Ieee/Acm International Conference On Automated Software

Engineering (Ase ’07), 2007, Pp.274–283.

[27] H. Tamada, K. Okamoto, M. Nakamura, And A.

Monden, “Dynamic Software Birthmarks To Detect The

Theft Of Windows Applications,”In Int’l Symp. On Future

Software Technology (Isfst),October 2004.

[28] H. Tamada, K. Okamoto, M. Nakamura, A. Monden,

And K. Ichi Matsumoto, “Design And Evaluation Of

Dynamic Software Birthmarks Based On Api Calls,” Nara

Institute Of Science And Technology,Info. Science

Technical Report Naist-Is-Tr2007011, Issn 0919-9527, May

2007.

[29] F. Bellard, “Tiny C Compiler,” Http://Bellard.Org/Tcc/.

[30] Open Watcom Contributors, “Open Watcom,”

Http://Www.Openwatcom.Org.

[31] A. Sebjornsen, J. Willcock, T. Panas, D. Quinlan, And

Z. Su,“Detecting Code Clones In Binary Executables,” In

Proceedings Of The Eighteenth International Symposium On

Software Testing And Analysis (Issta ’09), 2009, Pp. 117–

128.

[32] L. Luo, J. Ming, D. Wu, P. Liu, And S. Zhu,

“Semantics-Based Obfuscation-Resilient Binary Code

Similarity Comparison With Applications To Software

Plagiarism Detection,” In Proceedings Of The 22nd Acm

Sigsoft International Symposium On The Foundations Of

Software Engineering (Fse 2014), November 2014.

[33] X. Wang, Y.-C. Jhi, S. Zhu, And P. Liu, “Behavior

Based Software Theft Detection,” In Proceedings Of The

16th Acm Conference On Computer And Communications

Security (Ccs ’09), 2009, Pp. 280–290.

[34] F. Zhang, Y. Jhi, D. Wu, P. Liu, And S. Zhu, “A First

Step Towards Algorithm Plagiarism Detection,” In

Proceedings Of The 2012 International Symposium On

Software Testing And Analysis (Issta ’12).Acm, 2012, Pp.

111–121.

[35] F. Zhang, D. Wu, P. Liu, And S. Zhu, “Program Logic

Based Software Plagiarism Detection,” In Proceedings Of

The 25th Annual International Symposium On Software

Reliability Engineering (Issre 2014), November 2014.

[36] W. Zhou, Y. Zhou, X. Jiang, And P. Ning, “Detecting

Repackaged Smartphone Applications In Third-Party

Android Marketplaces,” In Proceedings Of The Second Acm

Conference On Data And Application Security And Privacy

(Codaspy ’12), 2012.

[37] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, And D.

Song, “Juxtapp: A Scalable System For Detecting Code

Reuse Among Android Applications,” In Proceedings Of

The 9th Conference On Detection Of Intrusions And

Malware & Vulnerability Assessment, 2012.

[38] R. Potharaju, A. Newell, C. Nita-Rotaru, And X. Zhang,

“Plagiarizing Smartphone Applications: Attack Strategies

And Defense Techniques,” In Engineering Secure Software

And Systems, Lecture Notes In Computer Science, 2012, Pp.

106–120.

[39] J. Crussell, C. Gibler, And H. Chen, “Attack Of The

Clones: Detecting Cloned Applications On Android

Markets,” Computer Security–Esorics 2012, Pp. 37–54,

2012.

[40] H. Huang, S. Zhu, P. Liu, And D.Wu, “A Framework

For Evaluating Mobile App Repackaging Detection

Algorithms,” In Proceedings Of The 6th International

Conference On Trust And Trustworthy Computing (Trust

’13), 2013.

[41] F. Zhang, S. Zhu, D. Wu, And P. Liu, “Viewdroid:

Towards Obfuscation-Resilient Mobile Application

Repackaging Detection,” In Proceedings Of The 7th Acm

Conference On Security And Privacy In Wireless And

Mobile Networks (Wisec 2014), July 2014.

[42] J. Newsome And D. Song, “Dynamic Taint Analysis

For Automatic Detection, Analysis, And Signature

Generation Of Exploits On Commodity Software,” In

Proceedings Of The Network And Distributed System

Security Symposium (Ndss ’05), 2005.0098-5589 (C) 2015

Ieee. Personal Use Is Permitted, But

Republication/Redistribution Requires Ieee Permission. See

Http://Www.Ieee.Org/Publications_Standards/Publications/

Rights/Index.Html For More Information. This Article Has

Been Accepted For Publication In A Future Issue Of This

Journal, But Has Not Been Fully Edited. Content May

Change Prior To Final Publication. Citation Information:

Doi 10.1109/Tse.2015.2418777, Ieee Transactions On

Software Engineering Ieee Transactions On Software

Engineering, Vol. Vv, No. Nn, Mm Yyyy 20

[43] F. Bellard, “Qemu, A Fast And Portable Dynamic

Translator,” In Atec ’05: Proc. Of The Annual Conference

On Usenix Annual Technical Conference. Berkeley, Ca,

Usa: Usenix Association, 2005, Pp.41–41.

[44] I. D. Baxter, C. Pidgeon, And M. Mehlich, “Dms:

Program Transformations For Practical Scalable Software

Evolution,” In Proceedings Of The 26th International

Conference On Software Engineering (Icse ’04), 2004, Pp.

625–634.

[45] E. J. Berk And C. S. Ananian, “Jlex: A Lexical

Analyzer Generator For Java,” Online,

Http://Www.Cs.Princeton.Edu/∼Appel/Modern/Java/Jlex/.

[46] S. Mccamant, “Large Single Compilation-Unit C

Programs,”Jan2006,Http://People.Csail.Mit.Edu/Smcc/Proje

cts/Single-File-Programs/.

[47] S. Drape, A. Majumdar, And C. Thomborson, “Slicing

Aided Design Of Obfuscating Transforms,” In 6th Ieee/Acis

International Conference On Computer And Information

http://www.ieee.org/Publications_Standards/Publications/

Package Description by Runtime Standards Also Its Presentation Towards Software Piracy Finding

International Journal of Advanced Technology and Innovative Research

Volume.08, IssueNo.05, May-2016, Pages: 0903-0909

Science (Icis ’07). Los Alamitos, Ca, Usa: Ieee Computer

Society, 2007, Pp. 1019–1024.

[48] H. Tamada, M. Nakamura, A. Monden, And K. Ichi

Matsumoto,“Introducing Dynamic Name Resolution

Mechanism For Obfuscating System-Defined Names In

Programs,” In Proc. Iasted International Conference On

Software Engineering (Iasted Se 2008, 598-074), February

2008, Pp. 125–130.

[49] S. T. Chow, Y. Gu, And H. J. Johnson, “Tamper

Resistant Software Encoding,” Jan. 11 2005, Us Patent

6,842,862.

[50] D. Knuth, The Art Of Computer Programming, Volume

Two, Seminumerical Algorithms. Addison-Wesley, 1998.

[51] S. Chow, P. Eisen, H. Johnson, And P. C. Van

Oorschot, “A Whitebox Des Implementation For Drm

Applications,” In Digital Rights Management. Springer,

2003, Pp. 1–15.

[52] C. Linn And S. Debray, “Obfuscation Of Executable

Code To Improve Resistance To Static Disassembly,” In

Proceedings Of The 10
th

 Acm Conference On Computer And

Communications Security (Ccs 2003). Acm, 2003, Pp. 290–

299.

[53] Y. Kanzaki, A. Monden, M. Nakamura, And K.-I.

Matsumoto, “Exploiting Self-Modification Mechanism For

Program Protection,” In Proceedings Of The 27th Annual

International Computer Software And Applications

Conference (Compsac 2003). Ieee, 2003, Pp. 170–179.

[54] K. M. A. Alzarooni, “Malware Variant Detection,”

Ph.D. Dissertation,Unversity College London, 2012.

[55] H. Il Lim, H. Park, S. Choi, And T. Han, “A Method

For Detecting The Theft Of Java Programs Through

Analysis Of The Control Flow Information,” Information

And Software Technology, Vol. 51,No. 9, Pp. 1338–1350,

2009. [Online]. Available:

Http://Www.Sciencedirect.Com/Science/Article/Pii/S095058

4909000469

[56] Y. Mahmood, Z. Pervez, S. Sarwar, And H. Ahmed,

“Similarity Level Method Based Static Software

Birthmarks,” In High Capacity Optical Networks And

Enabling Technologies, 2008. Honet 2008.International

Symposium On, Nov 2008, Pp. 205–210.

[57] M. Egele, C. Kruegel, E. Kirda, H. Yin, And D. Song,

“Dynamic Spyware Analysis,” In Usenix Annual Technical

Conference. Usenix, 2007, Pp. 233–246.

[58] L. Cavallaro, P. Saxena, And R. Sekar, “On The Limits

Of Information Flow Techniques For Malware Analysis And

Containment,” In Proceedings Of The 5th International

Conference On Detection Of Intrusions And Malware, And

Vulnerability Assessment (Dimva ’08), 2008, Pp.143–163.

[59] Oreans Technologies, “Code Virtualizer,”

Http://Www.Oreans.Com/Codevirtualizer.Php.

