

www.ijatir.org

ISSN 2348–2370

Vol.11,Issue.06,

June-2019,

Pages:264-269

Copyright @ 2019 IJATIR. All rights reserved.

Implementation of FIRs using Reconfigurable Constant Multiplication
S. ASHOK

1
, L.M.L NARAYANA REDDY

2

1
PG Scholar, Dept of ECE, PBR VITS, Kavali, AP, India.

2
Assistant

Professor, Dept of ECE, PBR VITS, Kavali, AP, India.

Abstract: This article introduces a new heuristic to generate

pipelined run-time reconfigurable constant multipliers for

field programmable gate arrays (FPGAs). It produces results

close to the optimum. It is based on an optimal algorithm

which fuses already optimized pipelined constant multipliers

generated by an existing heuristic called reduced pipelined

adder graph (RPAG).Switching between different single or

multiple constant outputs is realized by the insertion of

multiplexers. The heuristic searches for solutions that result

in minimal multiplexer overhead. Using the proposed

heuristic reduces the run-time of the fusion process, which

raises the usability and application domain of the proposed

method of run-time reconfiguration. An extensive evaluation

of the proposed method confirms a 9%–26% FPGA resource

reduction on average compared to previous work. For

reconfigurable multiple constant multiplication, resource

savings of up to 75% can be shown compared to a standard

generic lookup table based multiplier. Two low level

optimizations are presented, which further reduce resource

consumption and are included into an automatic VHDL code

generation based on the Flo Po Co library.

Keywords: FPGAs, Reconfigurable Constant Multipliers,

FIRs.

I. INTRODUCTION

 In this thesis optimization methods to implement run-time

reconfigurable constant multipliers (RCMs) on field

programmable gate arrays (FPGAs) are proposed. The

performance, hardware effort, reconfiguration time and

power consumption of resulting circuits are evaluated. The

resulting solutions add some important trade-off points to the

design space of RCM on PGAs and make new applications

possible. Multiplication with constants is one of the most

frequent operations in digital signal processing (DSP). At the

same time, FPGAs have a growing market in DSP

applications which were formerly dominated by application

specific integrated circuit (ASIC) implementations. Reasons

for this trend are the flexibility provided by the re-

programmability of FPGAs and increasing ASIC

manufacturing costs. The costs of the re-programmability of

FPGAs are that FPGA designs are typically larger, slower

and consume more power than an equivalent ASIC

realization. Therefore, optimized implementations of DSP

algorithms for FPGAs are getting more and more important.

This is one of the reasons why embedded multipliers are

present in the fabric of FPGAs.

 Nevertheless, the drawback of those fixed coarse-grained

blocks is their inflexibility in word size and their limited

quantity. Limited quantity is particularly critical in industrial

applications when low-cost FPGAs with only few embedded

multipliers have to be chosen and other parts of a design are

competing for DSP resources. Thus, alternative logic-based

methods for constant multiplication are required which are

independent of this embedded special purpose hardware but

are, on the other hand, efficient enough to narrow the gap to

an ASIC realization. Therefore, optimizing the

implementation of constant multiplication as shift-add-based

circuit is well studied. However, switching between a given

limited set of constant multiplications during run-time

instead of using larger generic multipliers is important, too.

Reconfigurable constant multipliers are used to realize

hardware efficient run-time adaptable filters, e.g., for

adaptive control and video coding applications. Specifically

in an application with tight reconfiguration time and

resource constraints is presented, which motivates the

necessity of highly optimized RCMs on FPGAs. There, an

FPGA is used as co-processor in the control loop accelerator.

 The Multiplication with constant coefficients is an

essential operation in digital signal processing. Initially one

of the reasons to put embedded multipliers or DSP blocks

into the fabric of field-programmable gate arrays (FPGAs)

was to reduce the performance gap between application

specific integrated circuits (ASICs) and FPGAs.

Nevertheless, the price to pay for those fixed coarse-grained

blocks is their inflexibility in word size and limited quantity.

Limited quantity is particularly critical in industrial

applications, when cheaper and rather small FPGAs with

only few DSP blocks have to be chosen due to price

pressure. Thus, logic-based constant multiplication methods

are needed. Optimizing the implementation of this operation

is well studied. Switching between a given set of constants

of such multipliers during run-time instead of using larger

generic multipliers is important to realize hardware efficient

run-time adaptable filters; discrete cosine transformation and

fast Fourier transform implementations [4] as well as

multistage filters for decimation or interpolation like poly

phase finite-impulse response (FIR) filters.

S. ASHOK, L.M.L NARAYANA REDDY

International Journal of Advanced Technology and Innovative Research

Volume. 11, IssueNo.06, June-2019, Pages: 264-269

II. OVERVIEW OF EXISTING METHOD

A. Field Programmable Gate Arrays

 Field programmable gate arrays (FPGAs) are array-based

integrated circuits, which can be programmed and re-

programmed on-site. They are regularly structured as two-

dimensional array originally consisting of basic logic

elements (BLEs) and an interconnecting network.

Programmability is achieved by small programmable

memories, which change the logic function of BLEs as well

as their interconnection. The price for this programmability

is that FPGA designs are larger, slower and consume more

dynamic power than an equivalent application specific

integrated circuit (ASIC) realization. However, FPGAs are

widely used with a growing market in the aerospace and

consumer electronics and automotive industry. An FPGA

can thusly be programmed to implement any logical circuit,

only limited by its required hardware resources a low price

are a great advantage to keep the financial risk for small and

medium volume developments low. This is not the case for

ASICs having large non-recurring engineering costs. It

shows only a small part of an FPGA which typically consists

of hundreds of thousands BLEs. Each BLE consists at least

of a function generator realized as look-up table (LUT) and a

memory element. The input/output ports (IO) as well as the

BLEs are connected to the routing network with connection

blocks. Some simplified example connections are shown.

Moreover, there are programmable routing switches and

interconnection complexity.

B. Architecture of FPGA

Normally FPGAs comprise of

1. Programmable logic blocks which implement logic

functions.

2. Programmable routing that connects these logic

functions.

3. I/O blocks that are connected to logic blocks through

routing interconnect and that Make off-chip

connections.

Fig 1: Simplified overview of FPGA Layout.

C. Routing Delay

 Regarding the delay of a circuit, the programmability of

FPGAs comes at a price. While in non-programmable

integrated circuits local connections have a negligibly small

contribution to the overall delay, in FPGAs such a

connection can include several routing elements. Moreover,

programmable parts within the connection blocks and

programmable routing switches add additional delay. A

common way to overcome this drawback is to add registers

to the initial circuit to split up the combinatorial parts.

Introducing registers has to be done systematically to keep

the functionality of the original circuit. This is achieved by

placing registers in the combinatorial path such that the

number of introduced registers on each path from an input to

an output is equal. This procedure called pipelining increases

the latency of the circuit while Keepin its functionality. An

overhead of required FPGA resources may occur due to a

massiv register insertion. On the other side, it is very likely

that unused registers in the FPGA’s BLEs, which are already

used for logic, will be taken. This was shown, e. g., in by a

speedup of 111% of a non-pipelined circuit on a Cyclone II

FPGA with a pipelining overhead of only 6 %. The more

recent FPGAs presented above should provide even better

results, as they have double the number of registers per BLE.

Power Consumption With an increase in FPGA resources

and maximum clock frequency, which can be observed for

each new FPGA generation, the power consumption of an

FPGA gets more and more important. The power consumed

by an FPGA can be separated into the two components static

power and dynamic power. Static means, that the power

consumption is independent of the switching activity in the

device. The main source of static power consumption is

transistor leakage current, which tends to increase with

decreasing technology size.

D. Routing Reconfiguration Using Logic Multiplexers On

FPGAs

 The programmable routing of an FPGA is fixed during

run-time. However, multiplexers realized with BLEs can be

used to change signal routing during run-time. This is

especially interesting in the context of switching between

the different circuit alternatives for resource sharing like, e.

g., in multiplexer-based run-time reconfigurable constant

multipliers (RCMs), which are the topic in Chapter 4.

Besides their mapping into the soft logic (slices/ALMs) as

shown in the following, the mapping of multiplexers onto

otherwise unused DSP blocks has been investigated , too. A

Virtex 6 slice consists of four 6-input LUTs, which can be

used as any 6-input logic function . Hence, each LUT can be

used as an up to 4:1 1-bit multiplexer. Moreover, the Virtex

6 slice includes two 2:1 multiplexers (MUXF7) to switch

between two of the LUT results, which extends the usage to

two up to 8:1 1-bit multiplexers. Finally, there is another 2:1

multiplexer (MUXF8) to switch between the outputs of the

two MUXF7s. This means, four LUTs (= one slice) are

required to build an up to 16:1 1-bit multiplexer as shown in

Two of those 16:1 multiplexers can be combined to a 32:1 1-

bit multiplexer utilizing only one additional LUT and so on.

Implementation Of Fir’s Using Reconfigurable Constant Multiplication

International Journal of Advanced Technology and Innovative Research

Volume. 11, IssueNo.05, June-2019, Pages: 264-269

Using Primitives [36] in the VHDL description makes it

possible to use the slices exactly in that way.

E. Power Consumption

 The power consumption for FPGAs can be estimated

using the vendor tools or measured using high precision

amplifiers and an oscilloscope. Estimation is done by

summing up the power of used resources based on their

switching activity. Moreover, the resulting data depends on

an FPGA specific capacitance model provided by the FPGA

vendors. It was shown by Becker et al. by a comparison to a

power measurement that the data gained by the vendor tool

Xilinx Power Estimator (XPE) is reliable. Therefore, XPE is

used for the analysis of run-time reconfigurable circuits. For

this purpose a netlist after Place and Route is simulated

using ModelSim using random input data. Then, the

simulated switching behavior as well as the netlist are used

as input for the power analysis in XPE. However, XPE does

not provide a method to estimate the power consumption of

the partial reconfiguration process. While there are

investigations how to model reconfiguration power, e.g. by

Bonamy et al, a power estimation tool for PR power is still

not available.

III. PROPOSED METHODOLOGY

 This project introduces a new heuristic to generate

pipelined run-time reconfigurable constant multipliers for

field programmable gate arrays (FPGAs). It produces results

close to the optimum. It is based on an optimal algorithm

which fuses already optimized pipelined constant multipliers

generated by an existing heuristic called reduced pipelined

adder graph (RPAG).Switching between different single or

multiple constant outputs is realized by the insertion of

multiplexers. The heuristic searches for solutions that result

in minimal multiplexer overhead. Using the proposed

heuristic reduces the run-time of the fusion process, which

raises the usability and application domain of the proposed

method of run-time reconfiguration. An extensive evaluation

of the proposed method confirms a 9%–26% FPGA resource

reduction on average compared to previous work. For

reconfigurable multiple constant multiplication, resource

savings of up to 75% can be shown compared to a standard

generic lookup table based multiplier. Two low level

optimizations are presented, which further reduce resource

consumption and are included into an automatic VHDL code

generation based on the Flo Po Co library.

A. Pipelined Adder Graphs

 The input to the algorithm are PAGs generated with the

RPAG heuristic. In general, the presented fusion is not

limited to RPAG generated circuits as pipelined MCM input.

However, RPAG was chosen as it proved to outperform

state-of-the-art MCM methods like Hcub, when these are

optimally pipelined. The results of RPAG are adder graphs

representing multiplier-less pipelined constant multipliers

using additions, subtractions, and bit-shifts only. The main

idea of multiplier-less multiplication as applied in RPAG is

to compose a constant multiplication of an addition of

shifted inputs. This is beneficial because a constant shift is

only a wire in hardware. All constants can be formally

represented as A-operation is performed. A multiplication by

17 could, for example, be realized as an addition of which is

defined as

 Aq(u,v) = |2l1u+(−1)sg2l2v|2−r (1) with q= (l1, l2, r, sg) (1)

 Where, u and v are the input constants, l1, l2, and r are

shift factors and the sign bit sg ∈ {0, 1} denotes whether an

addition or subtraction the input with the input left-shifted by

4 (multiplication by 16). In the following subtraction, 17

times the input is subtracted from 256 times the input, which

corresponds to a constant multiplication by 239. Finally, this

intermediate result is left shifted by three to get the final

result of 1912 times the input.

B. Improved Pipelined Adder Graph Fusion

 Just like RPAG, the proposed PAG fusion is backward

exploring. Starting with the constant mapping of the output

stage all PAGs are fused stage by stage. The basic idea is to

combine those intermediate values in the respective

preceding stage to share the same adder, which leads to a

minimal overhead of possibly necessary multiplexers or

switchable adder/subtractors. To do so, all combinations of

intermediate values are evaluated and their costs are

calculated separately and stored in a cost matrix.

Multiplexers can appear at the inputs of the successive stage

in the following cases.

1. Input has a different shift value.

2. Input has a different source.

3. Both of 1) and 2).

 As described before, the target is to select the overall best

mapping M for the specific stage s. This selection will be the

source for the determination of the next preceding stage s−1.

The procedure is repeated until the input (stage 0) is reached.

A simplified pseudo-code of the generalized fusion process

is given in Listing 1. It assumes that the overall best solution

and costs are globally known. It is started with the constant

mapping M of the output stage, the preceding stage s, the

search width w (unlimited for the optimal search) and the

costs of the current path curretcost, which is zero in the

beginning. Compared to the algorithm presented in [20] the

algorithm was generalized, such that it can be used both as

heuristic and in an optimal way. In contrast to an arbitrary

search through the whole search space, which was done in

the former version, the search is now improved and based on

a sorted cost matrix.

 In the running example used here, the three SCM graphs

generated with RPAG (see Fig. 2) are fused starting with the

desired output mapping M = {1912; 1111; 1331}, meaning

that the resulting circuit can be switched between these three

values. This will be called an SCM circuit with three

configurations in the following. The enumeration of all adder

combinations of the second last stage consisting of {239} for

the first, {19}, {273} for the second and {239}, {273} for

the third SCM solution, respectively. For the constant 1912

only one adder is required in stage two, but two adders are

required in the other SCM circuits. The cost evaluation is

following the assumption that the multiplexers will be

S. ASHOK, L.M.L NARAYANA REDDY

International Journal of Advanced Technology and Innovative Research

Volume. 11, IssueNo.06, June-2019, Pages: 264-269

realized as a cascade of 2 : 1 multiplexers. Thus, N −1 2 : 1

multiplexers are required to switch between N

configurations, which leads to a contribution of each used

multiplexer input of cost

 MUX = N – 1/ N (2)

 As a zero input can be realized by resetting the succeeding

register, these inputs are not considered as multiplexer inputs

as our implementation targets pipelined implementations.

Cost Matrix for Stage 2 Fusion of the given example

Fig 2: Result of combining 239, 19, 239, and -, 273, 273 as

preceding adders.

 The multiplexer cost for each mapping is stored in a

multidimensional cost matrix C (line 3 in Listing 1). The

cost matrix for the combinations of the current stage can be

found in Table I in a 2-D representation. Thus, finding the

cheapest mapping solution M for a specific stage reduces to

finding the valid solution with the lowest sum of costs. An

example for such a selection is given in Fig. 4.2. It

corresponds to the highlighted selection in Table I with a

total cost contribution of 1.33 + 0.67 = 2 2 : 1 multiplexers.

The cheapest solution for a specific stage is not necessarily

the best overall choice as it affects the costs in the preceding

stages. So, to find the optimal solution, a full search over all

possibilities is necessary.

IV. CONSTANT MULTIPLICATION ON

INTEGRATED CIRCUITS

 Multiplication with constants is an essential arithmetic

operation and used in nearly any DSP algorithm. The

implementation of this operation on integrated circuits (ICs)

is thus a well studied research topic. Instead of using generic

multipliers, constant multiplication is implemented

multiplier-less using additions, subtractions and bit shifts.

This is advantageous as bit shifts can be realized as wires on

ICs and special properties in the constant’s number

representation can be individually exploited.

A. Look-Up Table Based Constant Multiplication

 So far, the focus of the introduction of multiplier-less

constant multiplication has been on implementations using

additions and bit shifts. Alternatively,constant multiplication

can be performed by dividing the multiplication into partial

products. These partial products are then realized with LUTs

or block RAMs. The basic concept known as KCM was

described by Chapman, further extended by pipelining. This

method is especially interesting for FPGAs, due to their

LUTs in the BLEs and the presence of block RAM on nearly

every recent FPGA. Again, the multiplication of a number x

by a constant c is considered. As the sign bit for signed

multiplication is important it is included in the derivation

from the beginning. The two’s complement representation of

a signed number x with a width of Bx bit is

Fig3:LUT-based constant multiplication using pipelined

adder tree.

Fig 4: Example implementation of an 8x4 bit LUT-based

signed multiplier.

B. Reconfigurable Constant Multiplication using LUTs

 In this section, a reconfigurable constant multiplication

method using look -up tables (LUTs) is presented. It is based

on constant multiplication using LUTs known as KCM

described by Chapman. Reconfiguration is achieved by

changing the LUT contents of partial products during run-

time. This is achieved by using the logic reconfiguration in

Xilinx FPGAs prand was originally published. After a short

introduction of related work, the architecture of the

reconfigurable LUT multiplier is presented and compared to

a generic multiplier implementation and constant multipliers

reconfigured using Partial Reconfiguration (PR) and the

Internal Configuration Access Port (ICAP). Finally, an

application of the presented reconfiguration concepts is

shown using run-time reconfigurable finite impulse response

(FIR) filter architectures.

Implementation Of Fir’s Using Reconfigurable Constant Multiplication

International Journal of Advanced Technology and Innovative Research

Volume. 11, IssueNo.05, June-2019, Pages: 264-269

C. Reconfiguration Time

 The time that is needed to reconfigure the multiplier is an

important requirement in time-critical applications. The

fastest reconfiguration can be provided by the generic

multiplier architecture, whose coefficient can be changed

within one clock cycle. For the presented reconfigurable

KCM-based LUT multiplier design 32 reconfiguration clock

cycles are required until the output of the multiplier is valid

again (90.65 ns for the slowest design). This is very fast

compared to the PR concept offered by Xilinx via the ICAP.

There, the reconfiguration time depends on the size of the

partial bit file replacing the currently running constant

multiplier bit file. With a maximum reconfiguration clock

rate of 100 MHz and 32 bit data with the reconfiguration

time for a given partial bit file size.

V. SIMULATION RESULTS & DISCUSSIONS

Fig 5: Result of the Existing system RPAG.

Fig 6: Result of the Proposed system FIR.

VI. CONCLUSION AND FUTURE WORK

 In this section a run-time reconfigurable constant

multiplication circuit based on reconfigurable LUTs was

presented. It could be shown that the proposed realization

can be beneficially used instead of a generic multiplier in

terms of required hardware resources and provides a solution

with short reconfiguration times compared to using constant

coefficient multiplier IP cores and Partial Reconfiguration

via the ICAP. An experimental evaluation showed that the

CFGLUT reconfiguration with only 32 clock cycles of

reconfiguration time provides important trade-off points in

the design space for run-time reconfigurable constant

multipliers on FPGAs. Moreover, two run-time

reconfigurable FIR filter architectures using LUT

reconfiguration were introduced and analyzed in this

chapter. A direct integration of the presented FIR filter

architecture into the adaptive control loop of a particle

accelerator could be shown in. For this application no other

FIR filter implementation than the reconfigurable KCM

based multiplier presented here and was able to fulfill the

strict reconfiguration time and FPGA resource constraints.

Finally, decision support for selecting one of the presented

architectures for an FIR filter with given filter length and

word sizes was provided and supported by an experimental

evaluation. A comparison of the presented reconfigurable

FIR filter approaches to reconfigurable FIR filters using

other Reconfiguration methods.

VII. REFERENCES

[1] S. S. Demirsoy, I. Kale, and A. G. Dempster,

“Reconfigurable multiplier blocks: Structures, algorithm and

applications,” Circuits Syst. Signal Process., vol. 26, no. 6,

pp. 793–827, 2007.

[2] L. Aksoy, P. Flores, and J. Monteiro, “Multiplierless

design of folded DSP blocks,” ACM Trans. Design Autom.

Electron. Syst., vol. 20, no. 1, Nov. 2014, Art. no. 14.

[3] P. Lowenborg and H. Johansson, “Minimax design of

adjustablebandwidth linear-phase FIR filters,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 53, no. 2, pp. 431–439,

Feb. 2006.

[4] M. Garrido, F. Qureshi, and O. Gustafsson, “Low-

complexity multiplierless constant rotators based on

combined coefficient selection and shift-and-add

implementation (CCSSI),” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 61, no. 7, pp. 2002–2012, Jul. 2014.

[5] M. Faust, O. Gustafsson, and C.-H. Chang,

“Reconfigurable multiple constant multiplication using

minimum adder depth,” in Proc. 44
th

 Asilomar Conf. Signals

Syst. Comput. Conf. Rec., Pacific Grove, CA, USA, Nov.

2010, pp. 1297–1301.

[6] U. Meyer-Baese, J. Chen, C. H. Chang, and A. G.

Dempster, “A comparison of pipelined RAG-n and DA

FPGA-based multiplierless filters,” in Proc. IEEE Asia Pac.

Conf. Circuits Syst. (APCCAS), Singapore, Dec. 2006, pp.

1555–1558.

[7] P. Cappello and K. Steiglitz, “Some complexity issues in

digital signal processing,” IEEE Trans. Acoust. Speech

Signal Process., vol. 32, no. 5, pp. 1037–1041, Oct. 1984.

[8] A. G. Dempster and M. D. Macleod, “Constant integer

multiplication using minimum adders,” IEE Proc. Circuits

Devices Syst., vol. 141, no. 5, pp. 407–413, Oct. 1994.

[9] O. Gustafsson, A. G. Dempster, and L. Wanhammar,

“Extended results for minimum-adder constant integer

multipliers,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), vol. 1. Scottsdale, AZ, USA, 2002, pp. I-73–I-76.

[10] J. Thong and N. Nicolici, “A novel optimal single

constant multiplication algorithm,” in Proc. ACM/IEEE 47th

S. ASHOK, L.M.L NARAYANA REDDY

International Journal of Advanced Technology and Innovative Research

Volume. 11, IssueNo.06, June-2019, Pages: 264-269

Design Autom. Conf.(DAC), Anaheim,CA, USA, Jun. 2010,

pp. 613–616.

[11] D. R. Bull and D. H. Horrocks, “Primitive operator

digital filters,” IEE Proc. G Circuits Devices Syst., vol. 138,

no. 3, pp. 401–412, Jun. 1991.

[12] Y. Voronenko and M. Püschel, “Multiplierless multiple

constantz multiplication,” ACM Trans. Algorithms, vol. 3,

no. 2, May 2007, Art. no. 11.

[13] (2016). SPIRAL-Project. [Online]. Available:

http://www.spiral.net [14] M. Kumm, P. Zipf, M. Faust, and

C.-H. Chang, “Pipelined adder graph optimization for high

speed multiple constant multiplication,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), Seoul, South Korea, May

2012, pp. 49–52.

[15] M. Kumm, “Multiple constant multiplication

optimizations for field programmable gate arrays,” Ph.D.

dissertation, Digit. Technol. Group, Elect. Eng. Comput.

Sci., Univ. Kassel, Kassel, Germany, 2016.

[16] (2016). PAGSuite Project Website. [Online]. Available:

http://www.uni-kassel.de/go/pagsuite

[17] P. Tummeltshammer, J. C. Hoe, and M. Puschel,

“Time-multiplexed multiple-constant multiplication,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26,

no. 9, pp. 1551–1563, Sep. 2007.

[18] J. Chen and C.-H. Chang, “High-level synthesis

algorithm for the design of reconfigurable constant

multiplier,” IEEE Trans. Comput.- Aided Design Integr.

Circuits Syst., vol. 28, no. 12, pp. 1844–1856, Dec. 2009.

[19] K. Möller, M. Kumm, B. Barschtipan, and P. Zipf,

“Dynamically reconfigurable constant multiplication on

FPGAs,” in Proc. Workshop Methoden Und

Beschreibungssprachen Zur Modellierung und Verifikation

Von Schaltungen Und Systemen (MBMV), Böblingen,

Germany, 2014, pp. 159–169.

[20] K. Möller, M. Kumm, M. Kleinlein, and P. Zipf,

“Pipelined reconfigurable multiplication with constants on

FPGAs,” in Proc. 24th Int. Conf. Field Program. Logic Appl.

(FPL), Munich, Germany, 2014, pp. 1–6.

[21] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U.

Meyer-Baese, “Multiple constant multiplication with ternary

adders,” in Proc. 23rd Int. Conf. Field Program. Logic Appl.

(FPL), Porto, Portugal, Sep. 2013, pp. 1–8.

Author’s Profile:

L.M.L Narayana Reddy working as Assistant Professor in

the department of ECE, PBR Visvodaya Institute of

Technology & Science, Kavali with total teaching

experience of 8 years. He has guided 7 PG and 14 batches

of UG students. His areas of interest include VLSI.

S. Ashok has received his B.Tech degree in Electronics and

Communication Engineering from JNTU, Anantapur in 2014

and pursued M.Tech degree in VLSI from PBR VITS,

affiliated JNTU, Anantapur in 2017.

http://www.spiral.net/
http://www.uni-kassel.de/go/pagsuite

