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Abstract: This article introduces a new heuristic to generate 

pipelined run-time reconfigurable constant multipliers for 

field programmable gate arrays (FPGAs). It produces results 

close to the optimum. It is based on an optimal algorithm 

which fuses already optimized pipelined constant multipliers 

generated by an existing heuristic called reduced pipelined 

adder graph (RPAG).Switching between different single or 

multiple constant outputs is realized by the insertion of 

multiplexers. The heuristic searches for solutions that result 

in minimal multiplexer overhead. Using the proposed 

heuristic reduces the run-time of the fusion process, which 

raises the usability and application domain of the proposed 

method of run-time reconfiguration. An extensive evaluation 

of the proposed method confirms a 9%–26% FPGA resource 

reduction on average compared to previous work. For 

reconfigurable multiple constant multiplication, resource 

savings of up to 75% can be shown compared to a standard 

generic lookup table based multiplier. Two low level 

optimizations are presented, which further reduce resource 

consumption and are included into an automatic VHDL code 

generation based on the Flo Po Co library. 

 

Keywords: FPGAs, Reconfigurable Constant Multipliers, 

FIRs. 

I. INTRODUCTION 

   In this thesis optimization methods to implement run-time 

reconfigurable constant multipliers (RCMs) on field 

programmable gate arrays (FPGAs) are proposed. The 

performance, hardware effort, reconfiguration time and 

power consumption of resulting circuits are evaluated. The 

resulting solutions add some important trade-off points to the 

design space of RCM on PGAs and make new applications 

possible. Multiplication with constants is one of the most 

frequent operations in digital signal processing (DSP). At the 

same time, FPGAs have a growing market in DSP 

applications which were formerly dominated by application 

specific integrated circuit (ASIC) implementations. Reasons 

for this trend are the flexibility provided by the re-

programmability of FPGAs and increasing ASIC 

manufacturing costs. The costs of the re-programmability of 

FPGAs are that FPGA designs are typically larger, slower 

and consume more power than an equivalent ASIC 

realization. Therefore, optimized implementations of DSP 

algorithms for FPGAs are getting more and more important. 

This is one of the reasons why embedded multipliers are 

present in the fabric of FPGAs.  

   Nevertheless, the drawback of those fixed coarse-grained 

blocks is their inflexibility in word size and their limited 

quantity. Limited quantity is particularly critical in industrial 

applications when low-cost FPGAs with only few embedded 

multipliers have to be chosen and other parts of a design are 

competing for DSP resources. Thus, alternative logic-based 

methods for constant multiplication are required which are 

independent of this embedded special purpose hardware but 

are, on the other hand, efficient enough to narrow the gap to 

an ASIC realization. Therefore, optimizing the 

implementation of constant multiplication as shift-add-based 

circuit is well studied. However, switching between a given 

limited set of constant multiplications during run-time 

instead of using larger generic multipliers is important, too. 

Reconfigurable constant multipliers are used to realize 

hardware efficient run-time adaptable filters, e.g., for 

adaptive control and video coding applications. Specifically 

in an application with tight reconfiguration time and 

resource constraints is presented, which motivates the 

necessity of highly optimized RCMs on FPGAs. There, an 

FPGA is used as co-processor in the control loop accelerator.  

 

     The Multiplication with constant coefficients is an 

essential operation in digital signal processing. Initially one 

of the reasons to put embedded multipliers or DSP blocks 

into the fabric of field-programmable gate arrays (FPGAs) 

was to reduce the performance gap between application 

specific integrated circuits (ASICs) and FPGAs. 

Nevertheless, the price to pay for those fixed coarse-grained 

blocks is their inflexibility in word size and limited quantity. 

Limited quantity is particularly critical in industrial 

applications, when cheaper and rather small FPGAs with 

only few DSP blocks have to be chosen due to price 

pressure. Thus, logic-based constant multiplication methods 

are needed. Optimizing the implementation of this operation 

is well studied. Switching between a given set of constants 

of such multipliers during run-time instead of using larger 

generic multipliers is important to realize hardware efficient 

run-time adaptable filters; discrete cosine transformation and 

fast Fourier transform implementations [4] as well as 

multistage filters for decimation or interpolation like poly 

phase finite-impulse response (FIR) filters.   
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II. OVERVIEW OF EXISTING METHOD 

A. Field Programmable Gate Arrays 

 Field programmable gate arrays (FPGAs) are array-based 

integrated circuits, which can be programmed and re-

programmed on-site. They are regularly structured as two- 

dimensional array originally consisting of basic logic 

elements (BLEs) and an interconnecting network. 

Programmability is achieved by small programmable 

memories, which change the logic function of BLEs as well 

as their interconnection. The price for this programmability 

is that FPGA designs are larger, slower and consume more 

dynamic power than an equivalent application specific 

integrated circuit (ASIC) realization. However, FPGAs are 

widely used with a growing market in the aerospace and 

consumer electronics and automotive industry. An FPGA 

can thusly be programmed to implement any logical circuit, 

only limited by its required hardware resources a low price 

are a great advantage to keep the financial risk for small and 

medium volume developments low. This is not the case for 

ASICs having large non-recurring engineering costs. It 

shows only a small part of an FPGA which typically consists 

of hundreds of thousands BLEs. Each BLE consists at least 

of a function generator realized as look-up table (LUT) and a 

memory element. The input/output ports (IO) as well as the 

BLEs are connected to the routing network with connection 

blocks. Some simplified example connections are shown. 

Moreover, there are programmable routing switches and 

interconnection complexity. 

B. Architecture of FPGA 

Normally FPGAs comprise of 

1. Programmable logic blocks which implement logic 

functions. 

2. Programmable routing that connects these logic 

functions. 

3. I/O blocks that are connected to logic blocks through 

routing interconnect and that Make off-chip 

connections. 

 
Fig 1: Simplified overview of FPGA Layout. 

C. Routing Delay 

     Regarding the delay of a circuit, the programmability of 

FPGAs comes at a price. While in non-programmable 

integrated circuits local connections have a negligibly small 

contribution to the overall delay, in FPGAs such a 

connection can include several routing elements. Moreover, 

programmable parts within the connection blocks and 

programmable routing switches add additional delay. A 

common way to overcome this drawback is to add registers 

to the initial circuit to split up the combinatorial parts. 

Introducing registers has to be done systematically to keep 

the functionality of the original circuit. This is achieved by 

placing registers in the combinatorial path such that the 

number of introduced registers on each path from an input to 

an output is equal. This procedure called pipelining increases 

the latency of the circuit while Keepin its functionality. An 

overhead of required FPGA resources may occur due to a 

massiv  register insertion. On the other side, it is very likely 

that unused registers in the FPGA’s BLEs, which are already 

used for logic, will be taken. This was shown, e. g., in by a 

speedup of 111% of a non-pipelined circuit on a Cyclone II 

FPGA with a pipelining overhead of only 6 %. The more 

recent FPGAs presented above should provide even better 

results, as they have double the number of registers per BLE. 

Power Consumption With an increase in FPGA resources 

and maximum clock frequency, which can be observed for 

each new FPGA generation, the power consumption of an 

FPGA gets more and more important. The power consumed 

by an FPGA can be separated into the two components static 

power and dynamic power. Static means, that the power 

consumption is independent of the switching activity in the 

device. The main source of static power consumption is 

transistor leakage current, which tends to increase with 

decreasing technology size. 

 

D. Routing Reconfiguration Using Logic Multiplexers On 

FPGAs 

    The programmable routing of an FPGA is fixed during 

run-time. However, multiplexers realized with BLEs can be 

used to change signal routing during run-time. This is 

especially  interesting in the context of switching between 

the different circuit alternatives for resource sharing like, e. 

g., in multiplexer-based run-time reconfigurable  constant 

multipliers (RCMs), which are the topic in Chapter 4. 

Besides their mapping into the soft logic (slices/ALMs) as 

shown in the following, the mapping of multiplexers onto 

otherwise unused DSP blocks has been investigated , too. A 

Virtex 6 slice  consists of four 6-input LUTs, which can be 

used as any 6-input logic function . Hence, each LUT can be 

used as an up to 4:1 1-bit  multiplexer. Moreover, the Virtex 

6 slice includes two 2:1 multiplexers (MUXF7) to  switch 

between two of the LUT results, which extends the usage to 

two up to 8:1 1-bit multiplexers. Finally, there is another 2:1 

multiplexer (MUXF8) to switch between the outputs of the 

two MUXF7s. This means, four LUTs (= one slice) are 

required to build an up to 16:1 1-bit multiplexer as shown in 

Two of those 16:1 multiplexers can be combined to a 32:1 1-

bit multiplexer utilizing only one additional LUT and so on. 
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Using Primitives [36] in the VHDL description makes it 

possible to use the slices exactly in that way.  

 

E. Power Consumption 

     The power consumption for FPGAs can be estimated 

using the vendor tools or measured using high precision 

amplifiers and an oscilloscope. Estimation is done by 

summing up the power of used resources based on their 

switching activity. Moreover, the resulting data depends on 

an FPGA specific capacitance model provided by the FPGA 

vendors. It was shown by Becker et al.  by a comparison to a 

power measurement that the data gained by the vendor tool 

Xilinx Power Estimator (XPE)  is reliable. Therefore, XPE is 

used for the analysis of run-time reconfigurable circuits. For 

this purpose a netlist after Place and Route is simulated 

using ModelSim  using random input data. Then, the 

simulated switching  behavior as well as the netlist are used 

as input for the power analysis in XPE. However, XPE does 

not provide a method to estimate the power consumption of 

the partial reconfiguration process. While there are 

investigations how to model reconfiguration power, e.g. by 

Bonamy et al, a power estimation tool for PR power is still 

not available. 

III. PROPOSED METHODOLOGY 

     This project introduces a new heuristic to generate 

pipelined run-time reconfigurable constant multipliers for 

field programmable gate arrays (FPGAs). It produces results 

close to the optimum. It is based on an optimal algorithm 

which fuses already optimized pipelined constant multipliers 

generated by an existing heuristic called reduced pipelined 

adder graph (RPAG).Switching between different single or 

multiple constant outputs is realized by the insertion of 

multiplexers. The heuristic searches for solutions that result 

in minimal multiplexer overhead. Using the proposed 

heuristic reduces the run-time of the fusion process, which 

raises the usability and application domain of the proposed 

method of run-time reconfiguration. An extensive evaluation 

of the proposed method confirms a 9%–26% FPGA resource 

reduction on average compared to previous work. For 

reconfigurable multiple constant multiplication, resource 

savings of up to 75% can be shown compared to a standard 

generic lookup table based multiplier. Two low level 

optimizations are presented, which further reduce resource 

consumption and are included into an automatic VHDL code 

generation based on the Flo Po Co library. 

A. Pipelined Adder Graphs  

     The input to the algorithm are PAGs generated with the 

RPAG heuristic. In general, the presented fusion is not 

limited to RPAG generated circuits as pipelined MCM input. 

However, RPAG was chosen as it proved to outperform 

state-of-the-art MCM methods like Hcub, when these are 

optimally pipelined. The results of RPAG are adder graphs 

representing multiplier-less pipelined constant multipliers 

using additions, subtractions, and bit-shifts only. The main 

idea of multiplier-less multiplication as applied in RPAG is 

to compose a constant multiplication of an addition of 

shifted inputs. This is beneficial because a constant shift is 

only a wire in hardware. All constants can be formally 

represented as A-operation is performed. A multiplication by 

17 could, for example, be realized as an addition of which is 

defined as 

 

 Aq(u,v) = |2l1u+(−1)sg2l2v|2−r (1) with q= (l1, l2, r, sg) (1) 

 

     Where, u and v are the input constants, l1, l2, and r are 

shift factors and the sign bit sg ∈ {0, 1} denotes whether an 

addition or subtraction the input with the input left-shifted by 

4 (multiplication by 16). In the following subtraction, 17 

times the input is subtracted from 256 times the input, which 

corresponds to a constant multiplication by 239. Finally, this 

intermediate result is left shifted by three to get the final 

result of 1912 times the input. 

B. Improved Pipelined Adder Graph Fusion 

     Just like RPAG, the proposed PAG fusion is backward 

exploring. Starting with the constant mapping of the output 

stage all PAGs are fused stage by stage. The basic idea is to 

combine those intermediate values in the respective 

preceding stage to share the same adder, which leads to a 

minimal overhead of possibly necessary multiplexers or 

switchable adder/subtractors. To do so, all combinations of 

intermediate values are evaluated and their costs are 

calculated separately and stored in a cost matrix. 

Multiplexers can appear at the inputs of the successive stage 

in the following cases.  

1. Input has a different shift value. 

2. Input has a different source. 

3. Both of 1) and 2). 

     As described before, the target is to select the overall best 

mapping M for the specific stage s. This selection will be the 

source for the determination of the next preceding stage s−1. 

The procedure is repeated until the input (stage 0) is reached. 

A simplified pseudo-code of the generalized fusion process 

is given in Listing 1. It assumes that the overall best solution 

and costs are globally known. It is started with the constant 

mapping M of the output stage, the preceding stage s, the 

search width w (unlimited for the optimal search) and the 

costs of the current path curretcost, which is zero in the 

beginning. Compared to the algorithm presented in [20] the 

algorithm was generalized, such that it can be used both as 

heuristic and in an optimal way. In contrast to an arbitrary 

search through the whole search space, which was done in 

the former version, the search is now improved and based on 

a sorted cost matrix. 

     In the running example used here, the three SCM graphs 

generated with RPAG (see Fig. 2) are fused starting with the 

desired output mapping M = {1912; 1111; 1331}, meaning 

that the resulting circuit can be switched between these three 

values. This will be called an SCM circuit with three 

configurations in the following. The enumeration of all adder 

combinations of the second last stage consisting of {239} for 

the first, {19}, {273} for the second and {239}, {273} for 

the third SCM solution, respectively. For the constant 1912 

only one adder is required in stage two, but two adders are 

required in the other SCM circuits. The cost evaluation is 

following the assumption that the multiplexers will be 
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realized as a cascade of 2 : 1 multiplexers. Thus, N −1 2 : 1 

multiplexers are required to switch between N 

configurations, which leads to a contribution of each used 

multiplexer input of cost  

             MUX = N – 1/  N                                     (2) 

    As a zero input can be realized by resetting the succeeding 

register, these inputs are not considered as multiplexer inputs 

as our implementation targets pipelined implementations. 

Cost Matrix for Stage 2 Fusion of the given example 

 
 

 
Fig 2: Result of combining 239, 19, 239, and -, 273, 273 as 

preceding adders. 

     The multiplexer cost for each mapping is stored in a 

multidimensional cost matrix C (line 3 in Listing 1). The 

cost matrix for the combinations of the current stage can be 

found in Table I in a 2-D representation. Thus, finding the 

cheapest mapping solution M for a specific stage reduces to 

finding the valid solution with the lowest sum of costs. An 

example for such a selection is given in Fig. 4.2. It 

corresponds to the highlighted selection in Table I with a 

total cost contribution of 1.33 + 0.67 = 2 2 : 1   multiplexers. 

The cheapest solution for a specific stage is not necessarily 

the best overall choice as it affects the costs in the preceding 

stages. So, to find the optimal solution, a full search over all 

possibilities is necessary. 

IV. CONSTANT MULTIPLICATION ON 

INTEGRATED CIRCUITS 

     Multiplication with constants is an essential arithmetic 

operation and used in nearly any DSP algorithm. The 

implementation of this operation on integrated circuits (ICs) 

is thus a well studied research topic. Instead of using generic 

multipliers, constant multiplication is implemented 

multiplier-less using additions, subtractions and bit shifts. 

This is advantageous as bit shifts can be realized as wires on 

ICs and special properties in the constant’s number 

representation can be individually exploited. 

A. Look-Up Table Based Constant Multiplication 

 So far, the focus of the introduction of multiplier-less 

constant multiplication has been on implementations using 

additions and bit shifts. Alternatively,constant multiplication 

can be performed by dividing the multiplication into partial 

products. These partial products are then realized with LUTs 

or block RAMs. The basic concept known as KCM was 

described by Chapman, further extended by pipelining. This 

method is especially interesting for FPGAs, due to their 

LUTs in the BLEs and the presence of block RAM on nearly 

every recent FPGA. Again, the multiplication of a number x 

by a constant c is considered. As the sign bit for signed 

multiplication is important it is included in the derivation 

from the beginning. The two’s complement representation of 

a signed number x with a width of Bx bit is 

 
Fig3:LUT-based constant multiplication using pipelined 

adder tree. 

 
Fig 4: Example implementation of an 8x4 bit LUT-based 

signed multiplier. 

B. Reconfigurable Constant Multiplication using LUTs 

     In this section, a reconfigurable constant multiplication 

method using look -up tables (LUTs) is presented. It is based 

on constant multiplication using LUTs known as KCM 

described by Chapman. Reconfiguration is achieved by 

changing the LUT contents of partial products during run-

time. This is achieved by using the logic reconfiguration in 

Xilinx FPGAs prand was originally published. After a short 

introduction of related work, the architecture of the 

reconfigurable LUT multiplier is presented and compared to 

a generic multiplier implementation and constant multipliers 

reconfigured using Partial Reconfiguration (PR) and the 

Internal Configuration Access Port (ICAP). Finally, an 

application of the presented reconfiguration concepts is 

shown using run-time reconfigurable finite impulse response 

(FIR) filter architectures. 
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C. Reconfiguration Time 

     The time that is needed to reconfigure the multiplier is an 

important requirement in time-critical applications. The 

fastest reconfiguration can be provided by the generic 

multiplier architecture, whose coefficient can be changed 

within one clock cycle. For the presented reconfigurable 

KCM-based LUT multiplier design 32 reconfiguration clock 

cycles are required until the output of the multiplier is valid 

again (90.65 ns for the slowest design). This is very fast 

compared to the PR concept offered by Xilinx via the ICAP. 

There, the reconfiguration time depends on the size of the 

partial bit file replacing the currently running constant 

multiplier bit file. With a maximum reconfiguration clock 

rate of 100 MHz and 32 bit data with the reconfiguration 

time for a given partial bit file size. 

V. SIMULATION RESULTS & DISCUSSIONS 

 
Fig 5: Result of the Existing system RPAG. 

 
Fig 6: Result of the Proposed system FIR. 

VI. CONCLUSION AND FUTURE WORK 

     In this section a run-time reconfigurable constant 

multiplication circuit based on reconfigurable LUTs was 

presented. It could be shown that the proposed realization 

can be beneficially used instead of a generic multiplier in 

terms of required hardware resources and provides a solution 

with short reconfiguration times compared to using constant 

coefficient multiplier IP cores and Partial Reconfiguration 

via the ICAP. An experimental evaluation showed that the 

CFGLUT reconfiguration with only 32 clock cycles of 

reconfiguration time provides important trade-off points in 

the design space for run-time reconfigurable constant 

multipliers on FPGAs. Moreover, two run-time 

reconfigurable FIR filter architectures using LUT 

reconfiguration were introduced and analyzed in this 

chapter. A direct integration of the presented FIR filter 

architecture into the adaptive control loop of a particle 

accelerator could be shown in. For this application no other 

FIR filter implementation than the reconfigurable KCM 

based multiplier presented here and was able to fulfill the 

strict reconfiguration time and FPGA resource constraints. 

Finally, decision support for selecting one of the presented 

architectures for an FIR filter with given filter length and 

word sizes was provided and supported by an experimental 

evaluation. A comparison of the presented reconfigurable 

FIR filter approaches to reconfigurable FIR filters using 

other Reconfiguration methods. 
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